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A modified version of the Feynman relativistic chessboard model (FCM) is inves- 
tigated in which the paths involved are spirals in space-time. Portions of the 
paths in which the particle's proper time is reversed are interpreted in terms of 
antiparticles. With this interpretation the particle-antiparticle field produced by 
such trajectories provides a classical analog of the phase associated with particle 
paths in the unmodified FCM. It is shown that in the nonrelativistic limit the 
resulting kernel is the correct Dirac propagator and that particle-antiparticle 
symmetry is in this case responsible for quantum interference. 

1. INTRODUCTION 

One of the appealing features of the path integral formulation of nonre- 
lativistic quantum mechanics (Feynman and Hibbs, 1965) is the explicit use 
of classical paths. In the expression 

K(b,a)= ~ e is<[x<')l) (1.1) 
[x(t) ]  

where the sum is over all classical paths [x(t)] between a and b, it is only 
the association of phase with paths which marks the kernel as a nonclassical 
object. Here the operative "phase rule" is to associate the classical action S 
of the path [x(t)] in units of h with the phase angle of the path. Such a phase 
rule is not unique, and is provided as an ansatz for the particular model in 
question. 

Expressions of the form (1.1) provide a convenient illustration of the 
general extent of the quantum-classical analogy. The paths themselves and 
their use in a propagator have common analogs in classical systems. How- 
ever, the association of a phase with each classical path is apparently outside 
the domain of classical physics. It is, however, this association which is at 
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the heart of  the phenomenon of  quantum interference, and gives rise to 
many of  the puzzling aspects of  quantum theory. 

To say that there is no classical analog of  the association of phase with 
path is, however, too strong a statement. In the 1940s Feynman and Wheeler, 
and Stuckelberg (1948) pointed out that there is a classical analog of  the 
antiparticle. For  example, Feynman (1948) considered finding the paths of  
extreme action of  a model electron encountering a high potential barrier 
(Figure 1). He noted that under certain circumstances, paths with time- 
reversed sections provided such extrema, and the time-reversed segments 
could be interpreted as positrons. This interpretation provided charge con- 
servation in time. However, viewing the trajectory as a continuous space- 
time curve, it also provides the charge on the electron with a classical "phase" 
which changes by a factor of  ~r with each reversal of the direction in time. 
For  future reference we shall call this the classical phase rule. 

Since this rule has a classical basis in a least action principle, it seems 
reasonable to investigate its relationship to the quantum mechanical phase 
associated with paths in nonrelativistic quantum mechanics. 

V=O V z O  V=O 
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Fig. 1. If two points a and b are separated by a high potential barrier, there may be two paths 
which make the classical action an extremum. One (heavy line) represents the passage of a fast 
electron which is slowed down by the barrier. The other has a section which is reversed in time 
and is interpreted as the penetration of the barrier by a slow electron by means of a pair 
production at Q and an annihilation at P, section PQ representing the motion of the positron 
(Feynman, 1948). 
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It may be noted that, at the outset, it is not clear that there is any 
relationship whatsoever between the two concepts. The phase associated 
with equation (1.1) is a purely quantum mechanical object with no direct 
connection to special relativity (or indeed to anything in classical physics). 
On the other hand, the classical phase rule is a consequence of special 
relativity and has an independent existence within classical physics. It 
appears that the two concepts live in completely separate worlds, although 
the history of their association goes back a long way. z 

In this paper we begin an investigation by considering the specific case 
of a free particle moving in one dimension. The model we use is a mod- 
ification of the Feynman chessboard model (FCM). 

The FCM has a very simple phase rule which produces the correct Dirac 
propagator in the nonrelativistic limit. Although the phase rule is simple, it 
is without any obvious classical motivation. The modification of the FCM 
which we propose involves paths which are spirals in space-time. In the 
modified model the phase rules invoked are directly related to the classical 
phase rule associated with reversed proper time. The two phase rules consid- 
ered yield propagators for the Dirac and Klein-Gordon equations, respec- 
tively. In both cases we find that it is the simple requirement of charge 
conservation in time that generates the oscillatory character of the quantum 
propagators. Furthermore, each individual path in the sum over paths pro- 
duces a field of finite extent in space, providing a direct analog of wave- 
particle duality. Thus, the formulation provides a rather unique "picture" 
of a particle moving in one dimension, and we hope that it will encourage 
further investigation into more realistic systems. 

In Section 2 we review the FCM using both the 2 • 2 matrix formulation 
of Gersch (1981) and Jacobson and Schulman (1984) and the 4 • 4 formula- 
tion of Ord (1992). In Section 3 we modify the 4 • 4 formulation to incorpor- 
ate spiral trajectories in space-time, and in Section 4 we discuss the results. 

2. TRANSFER MATRIX FORMULATION 

In the FCM a point particle is constrained to move with speed c = 1 on 
a space-time lattice with lattice spacing e. The kernel for a particle to propa- 
gate from position a at time ta to position b at time tb is given by 

K(b, a) = ~ N(R)( i~m) R (2.1) 
R 

where the sum is over all forward "bishop's moves" connecting the space- 
time points (Figure 2). The set of paths is subdivided into paths with R 

2For a very interesting article containing some of the history of this see Schweber (1986). 
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Fig. 2. A path for the Feynman chessboard model. 

corners, and any path with R corners is given a weight (iem) n. N(R) is the 
number of paths with R corners. In the limit as e ~ 0, provided (tb-t,)>> 
1/m, the above free-particle propagator approaches the correct Dirac free- 
particle kernel (Feynman and Hibbs, 1965). 

The combinatorial factors N(R) in (2.1) may be calculated explicitly. 
However, a more instructive approach is to consider a spin formulation. 

Referring to Figure 2, we can see that the Feynman paths are con- 
structed from only two kinds of elementary links. These links may be labeled 
+ or - according to their displacement in the x direction. Thus at any lattice 
point on the t axis, t; say, the displacement of the path X(ti)=Xi is simply 
Xi=Xi_~+ ccri, where e is the lattice spacing and o-~=+1 is an Ising spin 
variable. This suggests that we may represent any N-step Feynman path by 
a set of N spins { o l , . . . ,  o'u}. 

The sum over paths, equation (2.1) (which is actually a 2 x 2 matrix 
with elements indexed by the orientation of the first and last link), is then 

Z,,N.,,,(M, N, ~) = ~. N(R)(i~m) n 
R 

= y ~  �9 �9 �9 ( i ~ m ) s  ('-":'~') (2.2) 
cr 2 1 o'3=5:1 aN 4-1 
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Here we have chosen to make the s and N dependence explicit and we 
have labeled the spatial displacement by the integer M =  (b-a) /e .  In the 
above, the sum in the exponent counts the number of corners in the path, 
and the prime on the sums indicates that only configurations such that 
~ J cry= M are considered. Note that apart from the presence of i in the 
weighting factor (iem), the quantity Z is formally a partition function for a 
one-dimensional Ising chain. 

The sums in (2.2) are awkward to calculate because of the restriction 
to constant displacement M. However, if we consider the discrete Fourier 
transform of Z, i.e., 

N 

Z,~u,,.,(p, N, 6)= Z e-~M*Pz"N,",( M, N, e) (2.3) 
M = - - N  

this removes the constraint of fixed M and is easier to calculate. We may 
recover the fixed displacement form (2.2) by considering an integral form of 
the Kronecker delta, namely 

6MM,=_2__~ ddl~ ei~M -M')r (2.4) 
- -  l g  

Then from (2.3) 

Zr N, e)=~-~ d(pe) Z,.u.,.,( p, N, e) e 'M'p~ (2.5) 

Now to calculate (2.3) we write 

j = - �89 ln(iem) (2.6) 

and using (2.2), we have 

Z,~,, , , (p,  N, 6 ) =  Z "" " 
O'2 = :i: 1 O-N_I = 4-1 

e x p - i p ~  cr.-j  • (1-cr.a.+ 0 
I n = l  

(2.7) 

Here the sums are unconstrained and (2.7) may be evaluated using a transfer 
matrix. That is, writing 

TF(O', or') = exp[--(i/2)pE(a + a') + ij(cra'-- 1)] (2.8) 
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we find that equation (2.7) becomes 

Z~N,,~,(p, N, e) = e -ip*('~' +'r~)(T ~ -')*N.~, (2.9) 

Now we are interested in the limit of Z as e ~ 0 in such a way that t = Ne 
is fixed. We thus have to find 

K(p, t )=  lim T~ ~ (2.10) 
, ~ 0  

To lowest order in e, TF is 

TF=(1--ip~ iem I (2.11) 
iem 1 + ipe/ 

The eigenvalues of TF are 

with 

,L~= 1 4-icE (2.12) 

E= (m 2 +p2) J/2 (2.13) 

The orthogonal projection operators corresponding to T~- are 

where ~x and ~z are Pauli spin matrices and I is the 2 x 2 identity. In the 
~ ' / " ~  e :~ie' and (2.8) becomes limit as e --* 0, ,~  

K ( p , t ) =  ~ l[l+It(mct,,-p~z)lei"~' (2.15) 
,=~1 21 E _1 

This propagator satisfies the Dirac equation (Jacobson and Schulman, 1984) 
and is the Fourier transform of the kernel (2.1) in the limit of small lattice 
spacing. 

The above calculation of (2.15) relies on the fact that the Feynman 
paths in this case all have the same displacements in t (i.e., Ne). In a subse- 
quent calculation this will not be the case, so for future reference we will 
incorporate paths of all lengths. To do this, we simply modify the transfer 
matrix (2.8) so that the displacement in time is "counted" by a variable qe. 
Since all transitions in the Feynman paths advance one unit in time per step, 
the new transfer matrix to lowest order in e is 

T ~(~r, ~r')= exp[-(i/2)pe(cr + or')+ ij(acr'- 1)] exp(-iqe) 

=(1-ie(p+q) e r a )  (2.16) 
em 1 + ie(p - q) 
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In order to find K(p, t) in this case, we have:to sum over paths of arbitrary 
length and extract only those with displacement t in time. Thus, 

K(p, t )= lira 1 f'~ ~, E ~ o 2--~ d ( q  ~)  (T ~)~ e iq~N (2.1 '7) 

where the limit is such that t--- e N  is fixed. Comparing this with (2.5), we 
see that q is conjugate to t in the same way that p is conjugate to the walk 
displacement X = eM. Expanding T ~ to the lowest order in e, we find, using 
(2.13) and (2.14), that 

T~=[1 + i e ( E - q ) ] P V +  + [ 1 - i e ( E + q ) ] P  v _ (2.18) 

where p v, are the orthogonal projection operators for Tv. Now summing 
the series in (2.17), we have 

pF+ pF_ 
K(p, t) = lim - -  dq + _ e 'q' 

~ 0 2 ~ i . j  ~/~ q - E  q + E /  

=pF+ em,+ pF_ e-;e,, t >0  (2.19) 

Here we evaluated the integrals by moving the poles at q = •  slightly into 
the positive half-plane and completing the contour as a semicircle in the 
upper half-plane. This gives the retarded propagator, with K(p, t )= 0 for 
t <0, and reproduces the result (2.15). 

The above calculations of the transformed kernel (2.19) are fairly simple 
and direct; however, the role of the phase rule implicit in (2.1) is not entirely 
transparent. In terms of the transfer matrices TF and T )  of (2.8) and (2.16) 
the path phases enter through the imaginary off-diagonal elements ( iem) .  In 
terms of a spin system this corresponds to an Ising chain with imaginary 
Boltzmann weights. Since we wish to separate, where possible, the phase 
rule from the path statistics, it is worthwhile reformulating the problem so 
that this is done in an obvious way. 

We note that the sum in equation (2.1) may be rewritten for finite e as 

K(b ,a )=  ~ N ( R ) ( ~ m )  R -  2 N ( R ) ( ~ m )  R 
R = 0 , 4  .... R =  2,6, . . .  

R= . .... R=3.7 .... 

Here the periodicity of i R is used to expand the sum into four separate terms. 
Each individual sum is a classical weighted sum pertaining to a restricted 
class of walks on the space-time lattice. The two minus signs and the presence 
of i in (2.20) combine the classical sums to form a quantum propagator. To 
segregate the phase rule from the path statistics we shall calculate the Fourier 
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transforms of each of the sums in (2.20) separately. To do this, we consider 
the transfer matrix 

:e: O 0 iml 
e - ip~ F, i n  

T4=|om\ 0 e ipe 

em 0 e ~pt] 

(2.21) 

Here states one to four correspond to contributions to the respective sums 
in equation (2.20). States one and two correspond to steps in the +x 
direction, and are distinguished by the parity of the number of corners in 
their "history." States three and four correspond to steps in the - x  direction. 

As was discussed elsewhere (Ord, 1992), the simple structure of (2.21) 
is easily interpreted. The diagonal elements of T4 correspond to two steps in 
the same direction. Such successive steps either increase or decrease the 
"displacement counting" variable pe through multiplication by e ~;p~. Two 
adjacent steps in opposite directions do not change the net displacement, 
but do contribute a real, positive corner weight era. The allowed state 
changes from the structure of (2.20) are 1 ~ 3, 3 --* 2, 2 -~ 4, and 4 -~ 1. This 
is reflected in the respective entries in T4. 

Now T~ -I simply counts the N-step walks involved in (2.20) while 
maintaining a distinction between walks with different numbers o f  corners 
modulo 4. To reconstruct the finite-e propagator of equation (2.9), we have 
to contract to a 2 x 2 representation using the prescription provided by 
(2.20). That is, we have to implement the phase rule (subsequently called 
the Feynman phase rule) which associate a phase of Jr/2 for every corner in 
the path. To do this, we regard states one and three as being the two distinct 
states of the chessboard problem and we "start" walks in these states. Walks 
which end in states two or four contribute - l  times their statistical weight 
and are thus subtracted from the contributions to states one and three, 
respectively. Finally, the factor of i in (2.20) distinguishes the two states of 
the chessboard problem. 

To perform the operation of adding the separate sums of (2.20) with 
the appropriate signs as above, we consider the "contractors" 

0/ ~ 1 7 6  
q =  0 - i  

and 

1 0 o ) 0  i  223) 
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To reproduce the kernel (2.9), we then have 

K(p,/)  =q*(lim T ~ I  (2.24) 
\ c ~ 0  / 

The advantage of the above formulation is that the expression in brackets 
above is completely classical and easily interpreted in terms of lattice walks. 
The "quantum mechanics" is brought in through the contractors q and q* 
which implement the phase rule of the model. 

To verify that (2.24) is in fact correct, we first note that to lowest order 
in 6, 

( e-ipe i e m l = T v  (2.25) 
q *T4q = \ i t m  e ip ~ ] 

Thus, Tn contracts to the transfer matrix of the 2 x 2 representation (2.8). 
However, we need more than this to confirm (2.24). We write T4 in terms 
of its eigenvalues and orthogonal projection operators. For small e these 
are 

c c R R T4 = Y'. (ZuP.+;LuPu) (2.26) 

with 

and 

The projectors are 

and 

with 

)t~ = 1 4- icE (2.27) 

/~ = 1 4- ,~(m 2 _pZ),/2= 1 4- ~F (2.28) 

=((1 (im/E)X- I 
P~" k - ( i m / E ) E -  (1 4-p /E)Z- /  (2.29) 

R {(1 :Fp/F)E + (m/F)Z  + ) 
P=~.= ~ (m/F)Z + (2.30) (1 +p/F)X +/ 

Z :L = �88 4- crx) (2.31) 

Comparing the complex eigenvalues A,~: of (2.27) with the eigenvalues of the 
2 • 2 transfer matrix (2.12) and (2.13), we see that they are identical. It can 
also be verified that the real eigenvalues A,~ correspond to the associated 
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Ising partition function [i.e., equation (2.1) with real corner weights sin]. 
Furthermore, it is easily verified that 

and 

q , p C q = p V  (2.32) 

q*P~q=O (2.33) 

Thus, the contractors q* and q select only projections of T4 u onto the eigen- 
space corresponding to the two complex eigenvalues. Similarly, it may be 
shown that the contractors reduce the orthogonal projectors of T4 corre- 
sponding to the complex eigenvalues X~: to their respective projectors in the 
2 • 2 representation. Thus, from (2.26), (2.32), and (2.33) 

q*T~q=q* y, ~ N ~ RN R VN v ( ~ )  Pu)q= ~ ((;t~) P~) ((X~) P~ + (2.34) 
/ / = 4 -  / Z = : ~  

and (2.24) follows as a result. 
Having observed that the FCM is reproduced in this formulation, we 

are now at liberty to modify the model by changing the phase rule. We do 
this simply by changing the contractors q* and q. For example, we note that 
if instead of calculating the propagator corresponding to equation (2.20), 
we remove the i from the calculation and compute 

Kc(b,a) = Z N(R)(sm)n- E N(R)(em)n 
R = 0 , 4  .... R = 2 , 6  .... 

then the corresponding contractors are 

~ 1 7 6  
S =  

0 1 

and 

(2.36) 

If we then compute a scalar propagator by taking the trace of the 2 • 2 
contraction, we find 

(2.38) 

,0 )0 1 ,237, 
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Here the association of phase with path is simpler than in the FCM. In this 
case there is a phase change of Jr for each two successive corners in the path, 
with no phase change for a single corner. We shall call this the KG phase 
rule, since the resulting propagator K6(p, t) satisfies the Klein-Gordon 
equation. 

Similarly, we may modify the calculation yet again and for example 
remove the two minus signs from (2.35), simply adding the sums. It is found 
that this in fact removes the calculation from the eigenspace corresponding 
to the two complex eigenvalues ~: ,  and the resulting "propagator" is in fact 
a classical partition function and is diffusive in character. 

This indicates that the aspect of the FCM that really generates quantum 
interference is the phase change of ~r for each successive pair of corners in 
the path. That is, the KG phase rule is responsible for quantum interference. 
(The intermediate phase shift of z~/2 in the FCM which distinguishes left 
and right is responsible for the particle "spin." Note that the full Feynman 
phase rule contains the KG phase rule but with left- and right-directed paths 
distinguished by the factor of i.) 

The above observation is highly suggestive. The "classical phase shift" 
associated with a classical particle confined to the chessboard is precisely ~r 
for each successive pair of corners provided those corners have the same 
chirality (i.e., two successive corners correspond to time reversal). Had the 
FCM corners had the same chirality, we could have identified the KG phase 
rule with the classical phase rule, thereby associating quantum interference 
with a physical law (charge conservation). 

Since successive corners in the FCM in fact have opposite chirality, 
the above association fails and the quantum phase rules still are simply 
prescriptions with no classical motivation. 

However, in the next section we shall modify the microscopic geometry 
of the paths in the FCM so that successive corners do have the same chirality. 
This will yield paths in which the classical phase rule and the KG phase rule 
are identical. The task will then be to show that the modified paths combined 
with the KG/classical phase rule still yield quantum propagators. 

3. THE EXTENDED MODEL 

In the previous section we constructed quantum propagators by associ- 
ating phases with certain types of walks on a space-time lattice. The phase 
rule was implemented through the use of contractors which reduced a 4 x 4 
representation to a 2 • 2 representation. The 4 • 4 representation contained 
the two states of the FCM plus two auxiliary states (2 and 4) which had no 
direct physical interpretation. The extra states were a convenience which 
allowed us to reproduce the periodicity of i n in equation (2.1). 
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In this section we shall take a different approach. We shall change the 
geometry of the underlying paths in order that the extra states of the 4 x 4 
formulation have a classical significance. 

To this end, consider Figure 3. Here state one corresponds to a particle 
moving in the +x, + t  direction. Similarly states two, three, and four corre- 
spond respectively to ( - x ,  - t ) ,  ( - x ,  t), and (x, - t )  directions. If  we keep 
the periodic structure of the FCM, then the sequence 1 ~ 3 ~ 2 ~ 4 ~ 1 . . .  
of  the previous models suggests we consider spiral walks as in the figure. 

We note that particles executing such walks will in general visit more 
than one space-time vertex at a given t. This means that in principle a single 
space-time trajectory could build up a "field" with finite extent in space. 
Although such a field would be built at the expense of particle number 
conservation, interpretation of states two and four as antiparticle states 
would provide a charge conservation principle instead. For example, if we 
consider states one and three to be electron states, then two and four are 
positron states and have opposite charge. This means that any single spiral 
electron trajectory may intersect the line t =  to many times, but the total 
charge along the line will be the same for all to. 

If  we interpret states two and four as antiparticle states, then the merg- 
ing contractors S* and q* of the previous section may be seen as enforcing 
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Fig. 3. A spiral path from a to b in the modified model. The particle starts in state 1 at a, 
switches to state 3 at c, state 2 at d, state 4 at e, and back to state 1 a t f .  Between d a n d f t h e  
particle has reversed proper time and states 2 and 4 correspond to antiparticle states. 
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charge conservation, the minus signs subtracting off contributions due to 
antiparticle states. For example, if T is a 4 • 4 transfer matrix, then 

S , T S =  (t t~-  t21 tl3--t23 / (3.1) 
\t3~ t4j t33 --/43/ 

The (1, 2) element of this subtracts transitions from the "particle" state three 
to the "antiparticle" state two from transitions to the "particle" state one. 
Similarly, the other elements conserve charge by subtracting contributions 
from corresponding antiparticle states. This means that the contractors S 
and S* implement a phase rule corresponding to conservation of charge 
when applied to the spiral trajectories of Figure 3. Putting this another way, 
S and S* implement both the KG and the classical phase rules in this system, 
since here these rules are identical. 

Contractors q* and q also implement conservation of charge; however, 
they also distinguish states one and three by a phase angle of 7r/2. 

In order to consider a sum-over-paths propagator with these spiral 
trajectories, we shall have to keep track of the displacement of the walks in 
the t direction. In the previous model there was no need to do this, since the 
walk displacements in t were simply Ne, where N was the number of steps 
in the walk. With spiral walks this is no longer the case and we shall have 
to go over to a grand ensemble and let N vary. We did this as an exercise 
for the FCM model in equation (2.17). The procedure here is similar; we 
need only produce the relevant transfer matrix. To this end, consider the 
matrix 

;e:q* 0 0 0  / 
e i(p+q)e e m  

Ts= 1 Or/ 0 e i(p-q)" 

F.m 0 e - i (p-  q)e] 
I 

(3.2) 

Here q is the variable conjugate to t, and the diagonal elements of the spiral 
transfer matrix T,. increase or decrease the "counting variables" pe and qe 
according to the respective displacements in space and time. The off-diagonal 
elements are the real, positive weights associated with each of the corners in 
the trajectory. 

Our prescription for finding the propagator K(p, t) for this model is 
similar to the 2 x 2 case equation (2.1 7). We have 

R~(p, t) = Tr(S*Z~S) (3.3) 
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where for t = N e  

[limlf~d(qe) 
Zs = ~-~o 

[o, 

(Ts)" e iq~N, t > 0 
,=0 (3.4) 

t >0  

In (3.4) the sum on n sums over all path lengths, and the integral over (qe) 
extracts contributions at fixed t. The requirement that Zs be zero for t < 0 
corresponds to the calculation of the retarded propagator. Left and right 
multiplication of Zs by S* and S, respectively, in (3.3) implements the phase 
rule of charge conservation, and taking the trace reduces the kernel to a 
scalar quantity. 

Similarly, we might consider forming a 2 • 2 propagator by using the 
contractors q* and q. That is, we shall also consider 

~,(p, t) =q*Zsq (3.5) 

To calculate (3.4) and (3.5), we proceed formally and write 

Z , : l i m  1 f "/" ~ ( Q l - ~ ) e  iqeN , - -  dq t >0  (3.6) 
e~~ 2Jr ,_x/,  u=l 

where the Q,  are projection operators for T~. Now equation (3.6) may be 
evaluated directly, but since the calculation is tedious and the projectors Q,  
not particularly enlightening, we postpone the computation in favor of a 
fairly transparent short-cut. 

If we consider calculating the propagator (3.5), one possibility is that 
we take the contractors inside the sum in (3.4). We shall then be interested 
in terms of the form q*TTq. We note that 

q*q = 1 (3.7) 

and to lowest order in e 

q , T , q = ( l - i e ( p + q )  em ) = T ~  (3.8) 
em 1 + ie(p  - q) 

where T ~ is the transfer matrix (2.16). Similarly, we find that 

q* T~q = (T ~)2 + O(e 2) (3.9) 

where O(e  2) is a matrix of terms which are of order e 2. If we now assume 
that to lowest order in e 

q*T ~"q = (T D" (3.10) 



Classical Analog of Quantum Phase 1191 

then using (3.4), (3.5) becomes 

R(p, t) = lim d(qe) 
E ~ O G  rc 

(T~)" e iqeN (3.11) 
n=0 

for Ne = t. We have already evaluated this expression in (2.19) and the result 
is that R(p, t) is just the Dirac propagator of (2.15). 

Although the above "derivation" is suspect since the assumption (3.10) 
is not obvious for large n, the procedure does display the relation between 
the spiral model and the FCM in a particularly simple way. 

To see this, note that we have chosen spiral paths in space-time in order 
to provide a classical motivation for the "quantum" phase rules. In order 
to do this, we expanded the representation to a 4 x 4 system, which allowed 
antiparticle states. This effectively provided us with a classical motivation 
for the negative contributions to the sum over paths. In the 4 x 4 representa- 
tion the Feynman phase rule was implemented through contraction to a 
2 x 2 formulation using the contractors q* and q. Equation (3.8) states that 
in the (p, q) representation the contracted spiral transfer matrix is to first 
order in e precisely the transfer matrix of the FCM in the same representa- 
tion. This suggests that fluctuating chain length and charge conservation in 
the 4 x 4 formulation yield an effective phase change per unit time equivalent 
to that of  the FCM. 

Similarly, equation (3.3) can be calculated by contracting to a 2 x 2 
representation before summing the series. The result is the Klein-Gordon 
propagator (2.38). This is particularly interesting because the phase rule in 
this case is charge conservation alone. There is no extra phase change of 
Jr/2 distinguishing the two directions in space. 

Having obtained the propagators (3.3) and (3.5) using heuristic argu- 
ments, we now turn to a straightforward evaluation of the 4 • 4 kernel Z, 
of equation (3.6). The eigenvalues of T, are found to be 

%= 1 4-isF i (3.12) 

with 

F • = [(q2 +p2) 4- (m 4 + 4p2q2),/21,/2 (3.13) 

We label conjugate pairs as 

c _ _  %~ - 1 4- i e F -  (3.14) 

and 

z~  = 14- i eF  + (3.15) 
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The eigenvectors corresponding to X~, for p = 4- are 

[ t(F+) 2- (d+)21(pF- - d +) 1 
r - i [ (p F -  - d - )m  2 ) 2 ~ a F - m  3 | {  [(F+) 2 -  (d+) ~] + (d-  - u F - ) ( d  + - d - ) }m (3.16) 

\ m 3 

where 

and 

d + = (q+p) (3.17) 

A = [(F+) 2- (F-) 2] (3.18) 

The eigenvectors corresponding to X~ can be obtained from (3.16) by inter- 
changing F + and F-. The vectors dual to (I)~ u can be found to be 

_ [  im(pF-  +d+)(pF - + d  +) I 
(3.19) -I m2(pF-+d+)  I 

\ ( p F -  + d-) t (d+)  2 -  (F-)21] 

with the vectors ( ~  being obtained by an interchange of  F + and F - .  The 
projection operators can then be formed from (3.16) and (3.19) and the 
result substituted into equation (3.6). For example, the (1, 1) element of  Zs, 
corresponding to the first eigenvalue using (3.16) and (3.17) is 

, _ 1 ,, , [ [ (F  ) - ( d  ) ] ( F  - d  ) eiqe N 
Z s , , -  lirn - -  atqe) 2 i ~  

~ 0  2tr , 

27ri dq\ 4R(p  ~ + q - R) 
eiq t (3.2O) 

o o  

Here 

R = ( m  4 -1- 4pZq2) I/2 (3.21 ) 

and we have taken the limit in such a way that t = Ne  is fixed. The superscript 
on Zs indicates that we are considering the first eigenvalue and projector. 
For p<<m the integral in (3.20) has poles at q =  + E  and branch points at 
q= +im2/2p. As in the evaluation of  (2.19), we move the poles slightly into 



C l a s s i c a l  A n a l o g  of Quantum Phase 1 1 9 3  

the upper half-plane and complete the contour using a large semicircle in 
the upper half-plane. This time, however, there is a branch cut along the 
imaginary q axis extending from the point q = im2/2p to q= +ioo, and the 
semicircular arc must be modified to exclude the cut. This gives a contribu- 
tion to the integral which decays as e-"2t/2C This may be neglected for time 
scales much greater than the Compton wavelength t >> 1/m. The contribution 
from the two poles then yields 

Z~, = ~[(1 +p/E) e-;e'+ (1 -p /E)  e'e'], t>O (3.22) 

A similar calculation for the (2, 1) element of this projector shows that 

1 __ 1 Z~2, - - Z , ,  (3.23) 

The same calculation for the conjugate eigenvalue ,t. = 1 - ieF- yields iden- 
tical contributions. The integrals for the two remaining eigenvalues ;t R are 
similar; however, as in the 4 • 4 version of the FCM, both sets of contractors 
q* and q, and S* and S eliminate the contributions from these eigenvalues. 
As a result, the (1, 1) element of the 2 • 2 propagator is, from (3.5) 

2 

K,,(P, t) = Z (Z]',,-Z~2,), t >0  
p = l  

= �89 +p/E) e-re'+ (1 -p /E)  e re'] (3.24) 

This is just the (1, 1) element of K(p, t) from equation (2.15). 
In a similar way, all four elements of [((p, t) can be evaluated, and the 

result is that g,(p, t) is the Dirac propagator of equation (2.15). Imple- 
menting the contraction using the matrices S* and S also yields similar 
results and we find that ~o(p,  t )= Ko(p, t). 

4. CONCLUSIONS 

In Section 2 we reviewed two formulations of the FCM. The first formu- 
lation, due to Gersch ( 1981) and Jacobson and Schulman (1984), calculated 
the sum over paths using a 2 x 2 transfer matrix which implemented the 
FCM phase rule by associating a phase angle of Jr/2 with each corner in the 
Feynman paths. In this formulation the transfer matrix had imaginary off- 
diagonal elements and the calculation of the propagator corresponded to 
the calculation of a partition function with imaginary Boltzman weights. 

The second formulation, following Ord (1992), expanded the represen- 
tation to a 4 • 4 system in which the transfer matrix corresponded to a 
calculation of a classical partition function with real, positive weights. In 
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this formulation the FCM phase rule was implemented after the calculation 
of the partition functions through contraction to a 2 x 2 representation. The 
contraction process removed the eigenvalue which dominated the classical 
partition function calculation, and selected subdominant behavior which 
reflected the periodic structure of the transfer matrix. This showed that the 
calculation of the quantum propagator was in a sense "embedded" in the 
calculation of a classical partition function for a four-state process, but the 
phase rule for extracting this propagator lacked any classical motivation. 

In Section 3 we used the 4 • 4 formulation of the preceding section to 
consider a sum over paths where the paths were all constrained to be spirals 
in space-time. The reason for considering such trajectories was to use the 
time-reversed portions of the paths to provide a classical motivation for the 
phase rule of the FCM. This strategy worked very well, particularly in the 
case of the Klein-Gordon propagator. In that case all that was needed to 
extract the propagator from the subdominant behavior of the classical parti- 
tion function was the single rule of charge conservation. 

It is interesting to note that this calculation suggests that the relationship 
between quantum mechanics and special relativity may be closer than previ- 
ously suspected. The "derivation" of the Klein-Gordon kernel from the sum 
over spiral paths used only motivation from special relativity. Although this 
derivation is not appropriate at high energies, it is valid in the nonrelativistic 
regime and as such provides a physical mechanism for quantum interference 
in this regime. Put another way, for a nonrelativistic free particle in one 
dimension there is now a microscopic basis (i.e., charge conservation on 
time scales of the order of the Compton wavelength) for the usual, purely 
formal method of quantization involving analytic continuation (e.g., t ~ i t ) .  

This physical basis has its roots in special relativity. 
So far we have made no attempt to interpret "observation" in this 

system. However, it is interesting to speculate that the above model may 
provide an example of a system where the "statistical interpretation" of 
quantum mechanics has some physical basis. Since the spiral paths in space- 
time effectively "traverse" many paths of the conventional Feynman formu- 
lation, there is some hope that the ensemble averages of the conventional 
formulation may be closely related to "time" averages of single spiral 
trajectories. 
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